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Goals
• Flow patterns in most simple case — stripping of a 

spherical galaxy’s hot atmosphere

• Observable features in different “infall stages”

• What could it mean for stripping of spirals?
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and di�use tail. We performed our edge analysis as out-
lined in §3.2, for this downstream edge of M60. The
ellipse and bounding angular sector parameters were the
same, with analysis conducted between 152⇥ to 214⇥ mea-
sured counterclockwise from west (using a logarithm step
size of 1.05). We take the gas temperature in M60 to be
the same in all directions.

Fig. 5.—: Coadded Chandra image of M60 with the
double wing structures highlighted by blocking to a bin
size of 16� 16 pixels (8”� 8”).

Fig. 6.—: Simulation of gas stripping and Kelvin-
Helmholtz instabilities in M89, which forms ”wings” sim-
ilar to those seen in the Chandra image of M60. The
frame is a low energy band X-ray projection.

The edge analysis returned a small jump J = 1.47+0.20
�0.20

at r = 13 kpc downstream from the center of M60. The
surface brightness data were well fit with a power law of
slope �in = 1.44+0.22

�0.21 inside the downstream edge and

�out = 1.32+0.15
�0.17 in the di�use tail. Fig 7 shows the ex-

tracted surface brightness profiles for both the upstream
(cold front) and downstream (tail) edges. The simula-
tions generally find the downstream edge at a larger ra-
dius than the upstream edge, even more so than is ob-
served for M60.

The surface brightness profiles are symmetric in both
radial directions until each respective edge. In the simu-
lations of M89, the upstream edge of the cold front and
wings looks sharper than the downstream edge, consis-
tent with what we see in Fig 7. The best fit model out-
side the leading edge is a beta model describing the Virgo
ICM. For the downstream edge, a second power law fits
the data well, further indication of a di�use, faint tail.

Fig. 7.—: Surface brightness radial profile for the up-
stream and downstream regions of M60. Green: the
upstream leading edge at redge = 12 kpc. Blue: down-
stream edge at 13 kpc across the faint, di�use tail. The
dashed lines mark the location of each respective edge.

There are several factors that could keep the tail of
M60 faint. A steep initial gas density profile for M60
would mean there was less gas to strip at larger radii
and the stripped gas may mix quickly with the surround-
ing ICM. The large distance of M60 from M87 (3.25⇥)
and the galaxy velocity of vM60 = 716+191

�169 km s�1 sug-
gest multiple possibilities. First, we could be witnessing
the very early stages of the M60-Virgo interaction, thus
su⇤cient gas has not yet been stripped to form a clear
tail as observed in M89, which is located far closer to
M87 (79’) and therefore has undergone a much longer
gas stripping period. Alternatively, M60 may already
have passed through the Virgo system once and we are
observing it shortly upon completing a turn around in its
orbit. This would suggest stripping was occurring purely
from KHI, hence no large volumes of gas are pushed be-
hind the galaxy.

4. CONCLUSIONS

Using archival data from the Chandra X-ray Observa-
tory (total cleaned exposure time 278 ks), we measured
the physical motion of the galaxy through the Virgo ICM.
With no measured jump in temperature found from the
spectral fits to the galaxy and the ICM, the tempera-
ture of the M60 gas was imposed to match that of the
surrounding ICM (kBT = 0.98 keV). The dynamical mo-
tion was therefore derived from the change in surface
brightness and emissivity values, independently of a tem-
perature gradient. The edge at redge = 12 kpc from
the galaxy center coincides with a jump in density of
nin/nout = 3.39+0.90

�0.80.
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Fig. 1.— left: Digitized Sky Survey (DSS) blue-band image of NGC 1404 and NGC 1399. Blue region marks the region used to derive the
X-ray surface brightness profile of the stripped tail in Figure 5. right: Exposure-corrected and blank-sky background subtracted Chandra
image of NGC 1404 and NGC 1399 in 0.5-2.0 keV. Box region marks the frame of Figure 2-top.
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Most simple picture:
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Here is where the stripped gas will 
go — tail of stripped gas, mixes 
with ICM (unless mixing 
suppressed)

sphere = 
galaxy’s atmosphere



Most simple picture — quasi-steady state!
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Evolution of spirals in clusters
projected 
gas density

projected star formation rate
recent 10 Myr recent 100 Myr

Roediger+ 2014See external movie file!



Dynamics matter!

Ram pressure deforms galaxy’s gas, true stripping takes 
time.

—> Most observed tails probably are remnant tails 
rather than tails of stripped gas.

The recent head wind history has big impact on stripped 
galaxy’s appearance.

Need to understand dynamics along with additional 
physics, or we may be misled.
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