Project Purple Rain 4: When Doves Cry, Satellites Quench

Mike Cooper UC Irvine

Tim Carleton (UCI), Sean Fillingham (UCI), M. Katy Rodriguez Wimberly (UCI)
John Phillips (Minnesota), Coral Wheeler (Caltech),
Mike Boylan-Kolchin (UT Austin), James Bullock (UCI)

along with Shea Garrison-Kimmel, Manoj Kaplinghat, and Jorge Peñarrubia

MNRAS 454, 2039–2049 (2015)

doi:10.1093/mnras/stv2058

Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS

uench

Sean P. Fillingham, * Michael C. Cooper, * Coral Wheeler, Shea Garrison-Kimmel, Michael Boylan-Kolchin^{2,3} and James S. Bullock

running title — TCB\(\frac{1}{2}\): the mass dependence of satellite quenching

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

MNRAS 463, 1916–1928 (2016) Advance Access publication 2016 August 24

doi:10.1093/mnras/stw2131

Under pressure: quenching star formation in low-mass satellite galaxies via stripping

Sean P. Fillingham, ** Michael C. Cooper, ** Andrew B. Pace, ** Michael Boylan-Kolchin, ** James S. Bullock, ** Shea Garrison-Kimmel** and Coral Wheeler**

nberly (UCI)

'eñarrubia

running title — Ch-Ch-changing satellites via stripping

 $^{^1}$ Center for Cosmology, Department of Physics and Astronomy, 4129 Reines Hall, University of 1

²Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Po

³Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Aust

¹Center for Cosmology, Department of Physics and Astronomy, 4129 Reines Hall, University of Cali

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, T

³TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA

A critical scale for satellite quenching?

Possibly a critical scale for satellite quenching at ~108 M_☉

Wheeler et al. (2014) Phillips et al. (2015a)

Converting observed satellite quenched fractions into quenching timescales (measured relative to infall)...

Use *N*-body simulations to constrain subhalo infall times, then tune τ_{quench} to match f_{quench} (given info for f_{quench} for the infall population).

Here, our τ_{quench} combines the "delay" and "fade" times from Wetzel et al. (2013).

ELVIS Suite of Local Group-like halos Garrison-Kimmel et al. (2014)

Using N-body Simulations to Model Satellite Quenching

Using N-body Simulations to Model Satellite Quenching

To quench satellites, we assume a quenching timescale (au_{quench})...

 $\tau_{\text{quench}} \sim 1 \, \text{Gyr}$

 $\tau_{\text{quench}} \sim 4 \text{ Gyr}$

To quench satellites, we assume a quenching timescale (au_{quench})...

Starvation Drives Satellite Quenching at High Masses

At high satellite masses, the quenching timescale follows the cold gas (H₂ + H_I) depletion timescale — as expected for starvation.

Fillingham et al. (2015)

The Timescale for Satellite Quenching

Fillingham et al. (2015)

Wetzel et al. (2013, 2015) De Lucia et al. (2012)

What about at lower masses (≤108 M_{sun})?

HI profiles of local field dwarfs with $M_{\star} \sim 10^6$ - $10^{10} M_{\odot}$ from...

abundance matching
-ormodeling of observed HI
kinematics

Under Pressure f: Stripping reproduces the critical quenching scale at $\sim 10^8 \, \mathrm{M}_\odot$ in Milky Way-like halos

Fillingham et al. (2015, 2016) $m M_{crit}(M_{host})$ 10 Quenching Timescale (Gyr) Starvation $au_{\mathrm{quench}} \sim au_{\mathrm{depl}}(\mathrm{H_2} + \mathrm{HI})$ Feedback + Stripping $au_{
m quench} \sim au_{
m dyn}$ 10^{10} 10^{11} 10^7 10^8 10^{9} 10^{6} Satellite Stellar Mass (M_o)

what drives quenching at

open questions...

→ is the Local Group cosmologically representative?

(more-or-less yes, $f_{\text{quench}} \sim 0.75 @ M_{\star} < 10^8 \,\text{M}_{\odot}$; Phillips et al. in prep)

→ what about backsplash galaxies, detailed SFHs, etc.?

(quenching model consistent with proper motions, SFHs, and local field population; Fillingham et al. in prep)

→ what suppresses star formation on the smallest scales?

(reionization, not environment; Rodriguez Wimberly et al. in prep)

→ how does the quenching timescale evolve with cosmic time?

(ongoing Keck/DEIMOS program to survey groups at $z \sim 0.8$; Fillingham et al. 2019) — also stay tuned for talk by G. Wilson finally, a quick note regarding UDG formation...

Carleton et al. (in prep):

- use Bolshoi to constrain the orbits of subhalos in clusters (M_{halo} , V_{peri})
- populate subhalos assuming a M⋆-M_{halo} relation and then adopt sizes from van der Wel (2014)
- apply an analytic model for size growth resulting from tidal stripping/heating of low-mass halos in clusters (in both cuspy and cored halos)
 - based on work by Raphaël Errani and Jorge Peñarruibia

sizes and masses of our simulated dwarf populations in comparison to Yagi et al. (2016)

finally, a quick note regarding UDG formation...

- → UDGs are dwarf systems (not failed MWs), occupying ~10¹¹-¹¹ Msun cored halos

our model is able to reproduce...

- the stellar mass and size distribution of UDGs
- the abundance of UDGs as a fin of cluster mass
- the stellar ages and metallicities of UDGs

