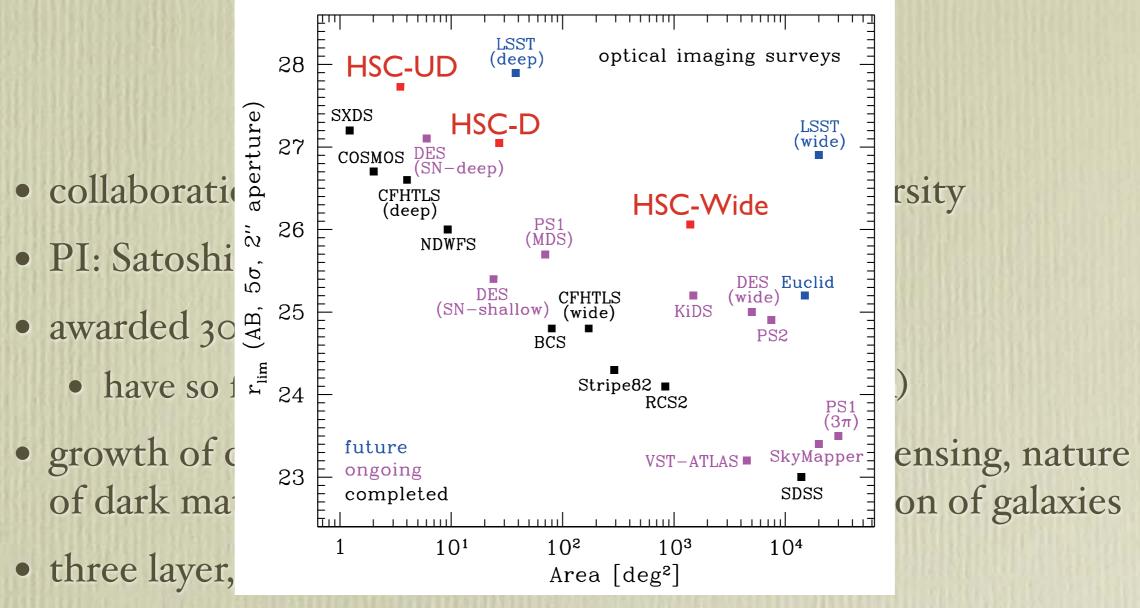
cluster galaxy evolution from z=1 to 0.3: an HSC view

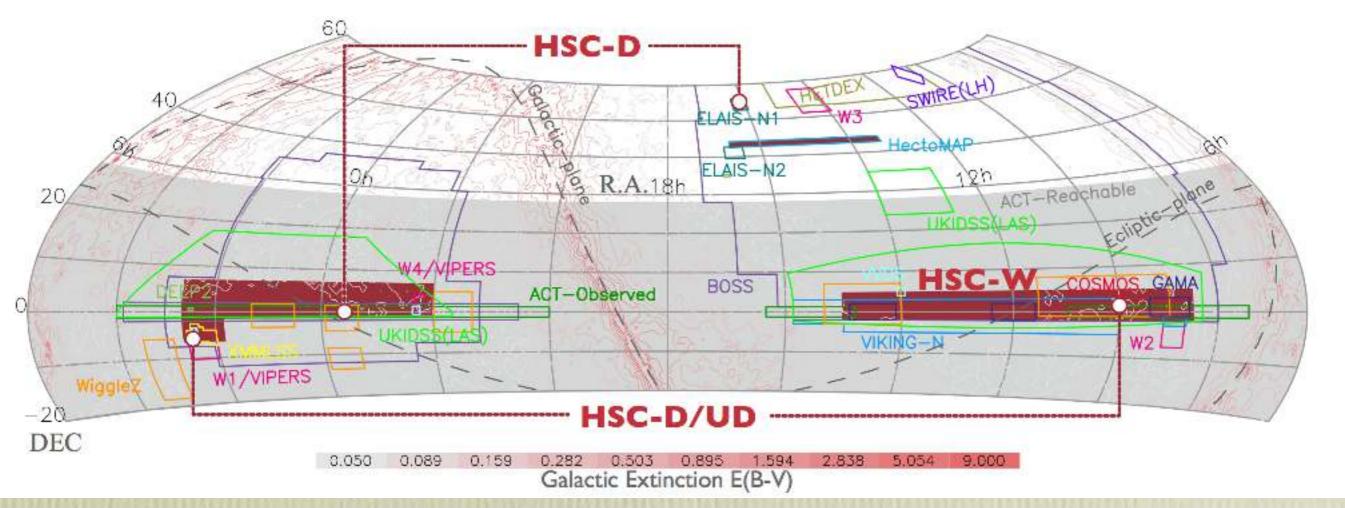
Yen-Ting Lin
Institute of Astronomy & Astrophysics, Academia Sinica
(ASIAA)

Bau-Ching Hsieh, Masamune Oguri, Sheng-Chieh Lin, Kai-Feng Chen, I-Non Chiu, Surhud More, Masayuki Tanaka, Taddy Kodama, Song Huang, Aleaxie Leauthaud, Lihwai Lin, Kevin Bundy, Satoshi Miyazaki, and the HSC collaboration

outline


- Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)
- a preview of power of HSC-SSP on cluster galaxy evolution
 - novelties
 - machine learning-derived stellar mass
 - top N cluster selection
 - brightest cluster galaxy (BCG)
 - stellar mass distribution
 - radio galaxies
 - (spatial distribution, luminosity distribution)

Lin et al., ApJ, in press (arXiv:1709.04484)


first-year results from the HSC survey

HSC survey

- collaboration: Japan, Taiwan, and Princeton University
- PI: Satoshi Miyazaki (NAOJ)
- awarded 300 nights over 6 years (2014-2019)
 - have so far observed 340 deg2 (full color, full depth)
- growth of cosmic structure through gravitational lensing, nature of dark matter & dark energy, formation & evolution of galaxies
- three layer, wedding cake-like design
 - wide (1400 deg², 3 fields, grizy, r-26): cosmology, galaxy evolution, AGN census
 - deep (27 deg², 4 fields, grizy+3NB, r-27): galaxy evolution with SDSS precision and statistical power at z>1
 - ultradeep (2 pointings, grizy+3NB, r-28): cosmic reionization, supernovae cosmology

- wide (1400 deg², 3 fields, grizy, r-26): cosmology, galaxy evolution, AGN census
- deep (27 deg², 4 fields, grizy+3NB, r-27): galaxy evolution with SDSS precision and statistical power at z>1
- ultradeep (2 pointings, grizy+3NB, r-28): cosmic reionization, supernovae cosmology

- three layer, wedding cake-like design
 - wide (1400 deg², 3 fields, grizy, r-26): cosmology, galaxy evolution, AGN census
 - deep (27 deg², 4 fields, grizy+3NB, r-27): galaxy evolution with SDSS precision and statistical power at z>1
 - ultradeep (2 pointings, grizy+3NB, r-28): cosmic reionization, supernovae cosmology

HSC survey

- collaboration: Japan, Taiwan, and Princeton University
- PI: Satoshi Miyazaki (NAOJ)
- awarded 300 nights over 6 years (2014-2019)
 - have so far observed 340 deg2 (full color, full depth)
- growth of cosmic structure through gravitational lensing, nature of dark matter & dark energy, formation & evolution of galaxies
- three layer, wedding cake-like design
 - wide (1400 deg², 3 fields, grizy, r-26): cosmology, galaxy evolution, AGN census
 - deep (27 deg², 4 fields, grizy+3NB, r-27): galaxy evolution with SDSS precision and statistical power at z>1
 - ultradeep (2 pointings, grizy+3NB, r-28): cosmic reionization, supernovae cosmology

depth

Wide	g	r	i	z	y				Aihara+17
exposure (min)	10	10	20	20	20				11111111111111
seeing (arcsec)	0.72	0.67	0.56	0.63	0.64				
depth (mag)	26.8	26.4	26.4	25.5	24.7				
target exposure (min)	10	10	20	20	20				
target depth (mag)	26.8	26.4	26.2	25.4	24.7				
Deep	g	r	i	z	y	NB387	NB816	NB921	
exposure (min)	20	15	30	35	20	-	45	60	
seeing (arcsec)	0.83	0.68	0.55	0.69	0.59	-	0.53	0.65	
depth (mag)	26.8	26.6	26.5	25.6	24.8	_	25.9	25.6	
target exposure (min)	84	84	126	210	126	84	168	252	
target depth (mag)	27.8	27.4	27.1	26.6	25.6	24.8	26.1	25.9	
UltraDeep	g	r	i	z	y		NB816	NB921	NB101
exposure (min)	70	70	130	130	210		200	270	_
seeing (arcsec)	0.74	0.62	0.64	0.59	0.74		0.60	0.76	_
depth (mag)	27.5	27.3	27.2	26.5	25.7		26.3	25.9	
target exposure (min)	420	420	840	1134	1134		630	840	1050
target depth (mag)	28.4	28.0	27.7	27.1	26.6		26.8	26.5	25.1

depth

Wide	g	r	i	z	y				Aihara+17
exposure (min)	10	10	20	20	20				111111111111111
seeing (arcsec)	9.72	0.67	0.56	0.63	0.64				
depth (mag)	26.8	26.4	26.4	25.5	24.7				
target exposure (min)	10	10	20	20	20				
target depth (mag)	26.8	26.4	26.2	25.4	24.7				
Deep	g	r	i	z	y	NB387	NB816	NB921	
exposure (min)	20	15	30	35	20	-	45	60	
seeing (arcsec)	0.83	0.68	0.55	0.69	0.59	_	0.53	0.65	
depth (mag)	26.8	26.6	26.5	25.6	24.8	12 <u> </u>	25.9	25.6	
target exposure (min)	84	84	126	210	126	84	168	252	
target depth (mag)	27.8	27.4	27.1	26.6	25.6	24.8	26.1	25.9	
UltraDeep	g	r	i	z	y		NB816	NB921	NB101
exposure (min)	70	70	130	130	210		200	270	_
seeing (arcsec)	0.74	0.62	0.64	0.59	0.74		0.60	0.76	-
depth (mag)	27.5	27.3	27.2	26.5	25.7		26.3	25.9	-
target exposure (min)	420	420	840	1134	1134		630	840	1050
target depth (mag)	28.4	28.0	27.7	27.1	26.6		26.8	26.5	25.1

40 papers to ap	pear in a	special issue of 1110j	
Hyper Suprime-Cam : System Design and Verification of Image Quality	Miyazaki, Satoshi	An optically-selected cluster catalog at redshift 0.1 <z<1.1 data<="" from="" hyper="" program="" s16a="" strategic="" subaru="" suprime-cam="" th="" the=""><th>Oguri, Masamune</th></z<1.1>	Oguri, Masamune
Hyper Suprime-Cam: Camera Dewar Design	Komiyama, Yutaka	The nature of Hα-selected galaxies along the huge cosmic web at z=0.4 revealed by Subaru Hyper Suprime-Cam survey	Koyama, Yusei
Hyper Suprime-Cam: Filters	Kawanomoto, Satoshi	Multiwavelength study of X-ray Luminous Clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field	Okabe, Nobuhiro
The On-Site Quality-Assurance System for Hyper Suprime-Cam: OSQAH	Furusawa, Hisanori	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation guenching from $z = 0.2$ to 1.1	Jian, Hung-Yu
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design	Takada, Masahiro	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color-magnitude diagrams and radial profiles of red and blue galaxies at \$0.1 <z<1.1\$< td=""><td>Nishizawa, Atsushi</td></z<1.1\$<>	Nishizawa, Atsushi
The Hyper Suprime-Cam Software Pipeline	Bosch, James	The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey	Mandelbaum, Rachel
Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline	Huang, Song	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data	Oguri, Masamune
The bright-star masks for the HSC-SSP survey	Coupon, Jean	A large sample of shear selected clusters from the Hyper Suprime- Cam Subaru Strategic Program S16A wide field mass maps	Miyazaki, Satoshi
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program	Tanaka, Masayuki	Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey	Medezinski, Elinor
Photometric Redshifts for the Hyper Suprime-Cam Subaru Strategic Program Data Release 1	Tanaka, Masayuki	Planck Sunyaev-Zel'dovich Cluster Mass Calibration using Hyper Suprime-Cam Weak Lensing	Medezinski, Elinor
Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at <i>z</i> -4-7 Derived with the Half-Million Dropouts on the 100 deg ² Sky	Ono, Yoshiaki	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses	Sonnenfeld, Alessandro
GOLDRUSH. II. Clustering of Galaxies at \$z\text{\sim 4-6\\$ Revealed} with the Half-Million Dropouts Over the 100 deg\\$^2\\$ Area Corresponding to 1 Gpc\\$^3\\$	Harikane, Yuichi	Clustering of galaxies around AGN in the HSC Wide survey	Shirasaki, Yuji
GOLDRUSH. III. A Systematic Search of Protoclusters at z~4 Based on the >100 deg^2 Area	Toshikawa, Jun	Enhancement of Galaxy Overdensity around Pair Quasars at \$z<3.6\$ based on the Hyper Suprime-Cam Subaru Strategic Program Survey	Onoue, Masafusa
Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program Strategy and Clustering Properties of \$\sim 2.000\$	Ouchi, Masami	Luminous quasars do not live in overdense regions of LBGs at z~4	Uchiyama, Hisakazu
SILVERRUSH. II. First Catalogs and Properties of ~2,000 Lya Emitters and Blobs at z~6-7 Identified over the 14-21 deg^2 Sky	Shibuya, Takatoshi	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging	He, Wanqiu
SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7	Shibuya, Takatoshi	The Quasar Luminosity Function at Redshift 4 with Hyper Suprime- Cam Wide Survey	Akiyama, Masayuki
SILVERRUSH. IV. Ly α Luminosity Functions at z = 5.7 and 6.6 Studied with ~2,000 LAEs on the 14-21 deg ² Sky	Ono, Yoshiaki	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 Quasars and Luminous Galaxies at $5.7 < z < 6.8$	Matsuoka, Yoshiki
A 17 deg\$^2\$ survey of emission line galaxies at z\$<\$1.5 in HSC-SSP DR1	Hayashi, Masao	X-Ray Bright Optically Faint Active Galactic Nuclei in the Subaru Hyper Suprime-Cam Wide Survey	Terashima, Yuichi
Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus III	Chiba, Masashi	Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey	Goulding, Andy
Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?	Greco, Johnny	Searching for Moving Objects in HSC-SSP: Pipeline and	Chen, Ying-Tung

Preliminary Results

Greco, Johnny

Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

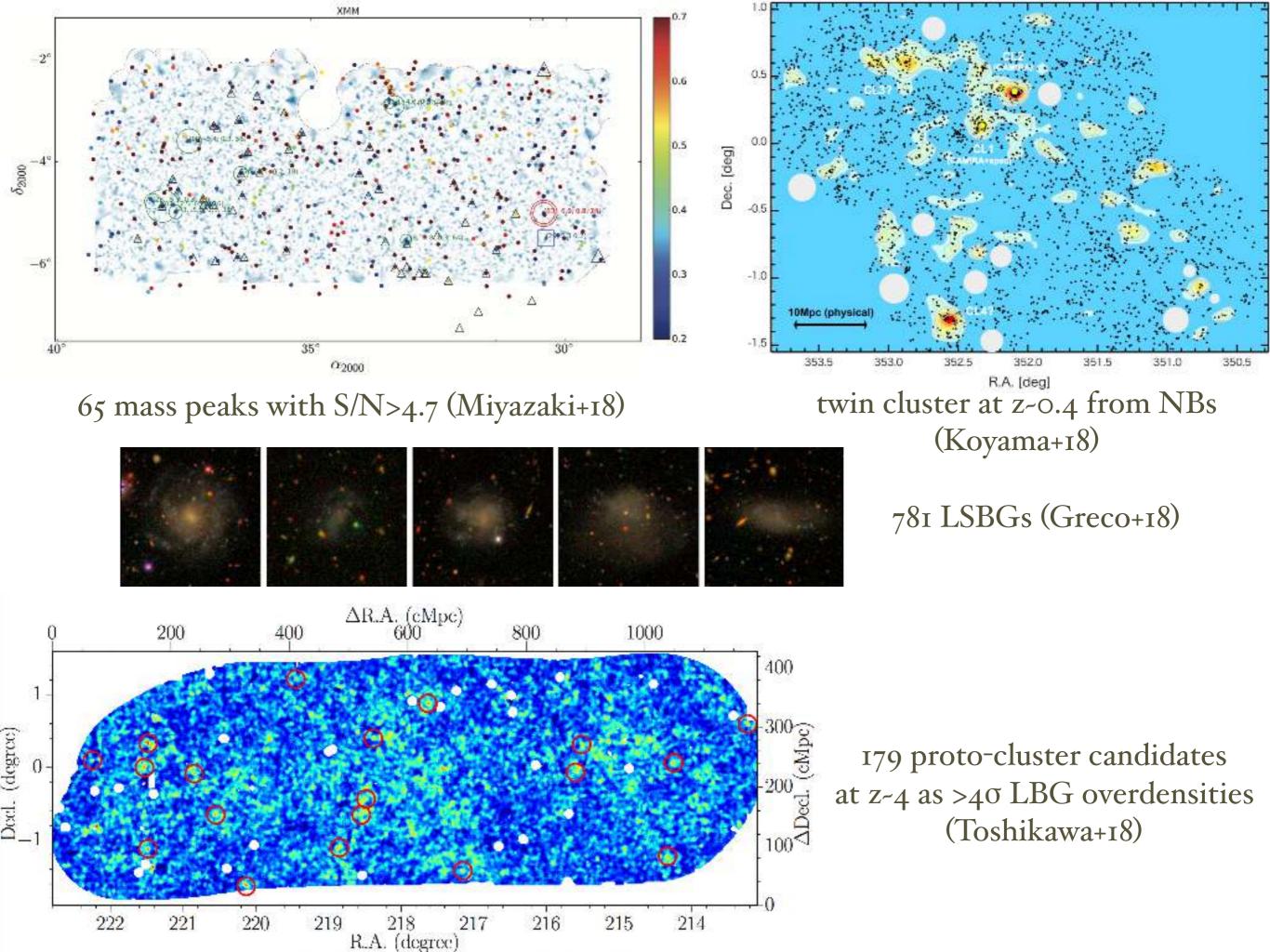
To be be all	Post === so	sp	
Hyper Suprime-Cam : System Design and Verification of Image Quality	Miyazaki, Satoshi	An optically-selected cluster catalog at redshift 0.1 <z<1.1 data<="" from="" hyper="" program="" s16a="" strategic="" subaru="" suprime-cam="" td="" the=""><td>Oguri, Masamune</td></z<1.1>	Oguri, Masamune
Hyper Suprime-Cam: Camera Dewar Design	Komiyama, Yutaka	The nature of Hα-selected galaxies along the huge cosmic web at z=0.4 revealed by Subaru Hyper Suprime-Cam survey	Koyama, Yusei
Hyper Suprime-Cam: Filters	Kawanomoto, Satoshi	Multiwavelength study of X-ray Luminous Clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field	Okabe, Nobuhiro
The On-Site Quality-Assurance System for Hyper Suprime-Cam: OSQAH	Furusawa, Hisanori	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation guenching from $z = 0.2$ to 1.1	Jian, Hung-Yu
The Hyper Suprime-Cam SSP Survey: Overview and Survey	Takada, Masahiro	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color-magnitude diagrams and radial profiles of red and blue galaxies at \$0.1 <z<1.1\$< td=""><td>Nishizawa, Atsushi</td></z<1.1\$<>	Nishizawa, Atsushi
The Hyper Suprime-Cam Software Pipeline	Bosch, James	The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey	Mandelbaum, Rachel
Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline	Huang, Song	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data	Oguri, Masamune
The bright-star masks for the HSC-SSP survey	Coupon, Jean	A large sample of shear selected clusters from the Hyper Suprime- Cam Subaru Strategic Program S16A wide field mass maps	Miyazaki, Satoshi
rirst Data Release of the Hyper Suprime-Cam Subaru Strategic Program	Tanaka, Masayuki	Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey	Medezinski, Elinor
Photometric Redshifts for the Hyper Suprime-Cam Subaru Strategic Program Data Release 1	Tanaka, Masayuki	Planck Sunyaev-Zel'dovich Cluster Mass Calibration using Hyper Suprime-Cam Weak Lensing	Medezinski, Elinor
Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at <i>z</i> -4-7 Derived with the Half-Million Dropouts on the 100 deg ² Sky	Ono, Yoshiaki	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses	Sonnenfeld, Alessandro
GOLDRUSH. II. Clustering of Galaxies at \$z\sim 4-6\\$ Revealed with the Half-Million Dropouts Over the 100 deg\\$^2\\$ Area Corresponding to 1 Gpc\\$^3\\$	Harikane, Yuichi	Clustering of galaxies around AGN in the HSC Wide survey	Shirasaki, Yuji
GOLDRUSH. III. A Systematic Search of Protoclusters at z~4 Based on the >100 deg^2 Area	Toshikawa, Jun	Enhancement of Galaxy Overdensity around Pair Quasars at \$z<3.6\$ based on the Hyper Suprime-Cam Subaru Strategic Program Survey	Onoue, Masafusa
Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program Strategy and Clustering Properties of \$\sim 2.000\$	Ouchi, Masami	Luminous quasars do not live in overdense regions of LBGs at z~4	Uchiyama, Hisakazu
SILVERRUSH. II. First Catalogs and Properties of ~2,000 Lya Emitters and Blobs at z~6-7 Identified over the 14-21 deg^2 Sky	Shibuya, Takatoshi	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging	He, Wanqiu
SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7	Shibuya, Takatoshi	The Quasar Luminosity Function at Redshift 4 with Hyper Suprime- Cam Wide Survey	Akiyama, Masayuki
SILVERRUSH. IV. Ly α Luminosity Functions at z = 5.7 and 6.6 Studied with ~2,000 LAEs on the 14-21 deg ² Sky	Ono, Yoshiaki	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 Quasars and Luminous Galaxies at $5.7 < z < 6.8$	Matsuoka, Yoshiki
A 17 deg\$^2\$ survey of emission line galaxies at z\$<\$1.5 in HSC-SSP DR1	Hayashi, Masao	X-Ray Bright Optically Faint Active Galactic Nuclei in the Subaru Hyper Suprime-Cam Wide Survey	Terashima, Yuichi
Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus III	Chiba, Masashi	Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey	Goulding, Andy
Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?	Greco, Johnny	Searching for Moving Objects in HSC-SSP: Pipeline and	Chen, Ying-Tung

Preliminary Results

Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

	To pupe 20 of on	Post === s	sp • • = = = = = 5	
	Hyper Suprime-Cam : System Design and Verification of Image Quality	Miyazaki, Satoshi	An optically-selected cluster catalog at redshift 0.1 <z<1.1 data<="" from="" hyper="" program="" s16a="" strategic="" subaru="" suprime-cam="" td="" the=""><td>Oguri, Masamune</td></z<1.1>	Oguri, Masamune
	Hyper Suprime-Cam: Camera Dewar Design	Komiyama, Yutaka	The nature of Hα-selected galaxies along the huge cosmic web at z=0.4 revealed by Subaru Hyper Suprime-Cam survey	Koyama, Yusei
	Hyper Suprime-Cam: Filters	Kawanomoto, Satoshi	Multiwavelength study of X-ray Luminous Clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field	Okabe, Nobuhiro
	The On-Site Quality-Assurance System for Hyper Suprime-Cam: OSQAH	Furusawa, Hisanori	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation guenching from $z = 0.2$ to 1.1	Jian, Hung-Yu
	The Hyper Suprime-Cam SSP Survey: Overview and Survey	Takada, Masahiro	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color-magnitude diagrams and radial profiles of red and blue galaxies at \$0.1 <z<1.1\$< td=""><td>Nishizawa, Atsushi</td></z<1.1\$<>	Nishizawa, Atsushi
	The Hyper Suprime-Cam Software Pipeline	Bosch, James	The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey	Mandelbaum, Rachel
	Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline	Huang, Song	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data	Oguri, Masamune
	The bright-star masks for the HSC-SSP survey	Coupon, Jean	A large sample of shear selected clusters from the Hyper Suprime- Cam Subaru Strategic Program S16A wide field mass maps	Miyazaki, Satoshi
	r irst Data Release of the Hyper Suprime-Cam Subaru Strategic	Tanaka, Masayuki	Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey	Medezinski, Elinor
	Photometric Redshifts for the Hyper Suprime-Cam Subaru Strategic Program Data Release 1	Tanaka, Masayuki	Planck Sunyaev-Zel'dovich Cluster Mass Calibration using Hyper Suprime-Cam Weak Lensing	Medezinski, Elinor
	Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at <i>z</i> 4-7 Derived with the Half-Million Dropouts on the 100 deg ² Sky	Ono, Yoshiaki	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses	Sonnenfeld, Alessandro
	GOLDRUSH. II. Clustering of Galaxies at \$z\sim 4-6\\$ Revealed with the Half-Million Dropouts Over the 100 deg\\$^2\\$ Area Corresponding to 1 Gpc\\$^3\\$	Harikane, Yuichi	Clustering of galaxies around AGN in the HSC Wide survey	Shirasaki, Yuji
	GOLDRUSH. III. A Systematic Search of Protoclusters at z~4 Based on the >100 deg^2 Area	Toshikawa, Jun	Enhancement of Galaxy Overdensity around Pair Quasars at \$z<3.6\$ based on the Hyper Suprime-Cam Subaru Strategic Program Survey	Onoue, Masafusa
	Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program Strategy and Clustering Properties of \$\sim 2.000\$	Ouchi, Masami	Luminous quasars do not live in overdense regions of LBGs at z~4	Uchiyama, Hisakazu
1	SILVERRUSH. II. First Catalogs and Properties of ~2,000 Lya Emitters and Blobs at z~6-7 Identified over the 14-21 deg^2 Sky	Shibuya, Takatoshi	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging	He, Wanqiu
	SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7	Shibuya, Takatoshi	The Quasar Luminosity Function at Redshift 4 with Hyper Suprime- Cam Wide Survey	Akiyama, Masayuki
	SILVERRUSH: **Lya Luminosity Functions at 7 = 5.7 and 6.6 Studied with ~2,000 LAEs on 121 deg ² Sky	Ono, Yoshiaki	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 Quasars and Luminous Galaxies at $5.7 < z < 6.8$	Matsuoka, Yoshiki
	A 17 deg\$^2\$ survey of emission line galaxies at z\$<\$1.5 in HSC-	Hayashi, Masao	X-Ray Bright Optically Faint Active Galactic Nuclei in the Subaru Hyper Suprime-Cam Wide Survey	Terashima, Yuichi
	Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus III	Chiba, Masashi	Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey	Goulding, Andy
-	Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?	Greco, Johnny	Searching for Moving Objects in HSC-SSP: Pipeline and	Chen, Ying-Tung

Preliminary Results

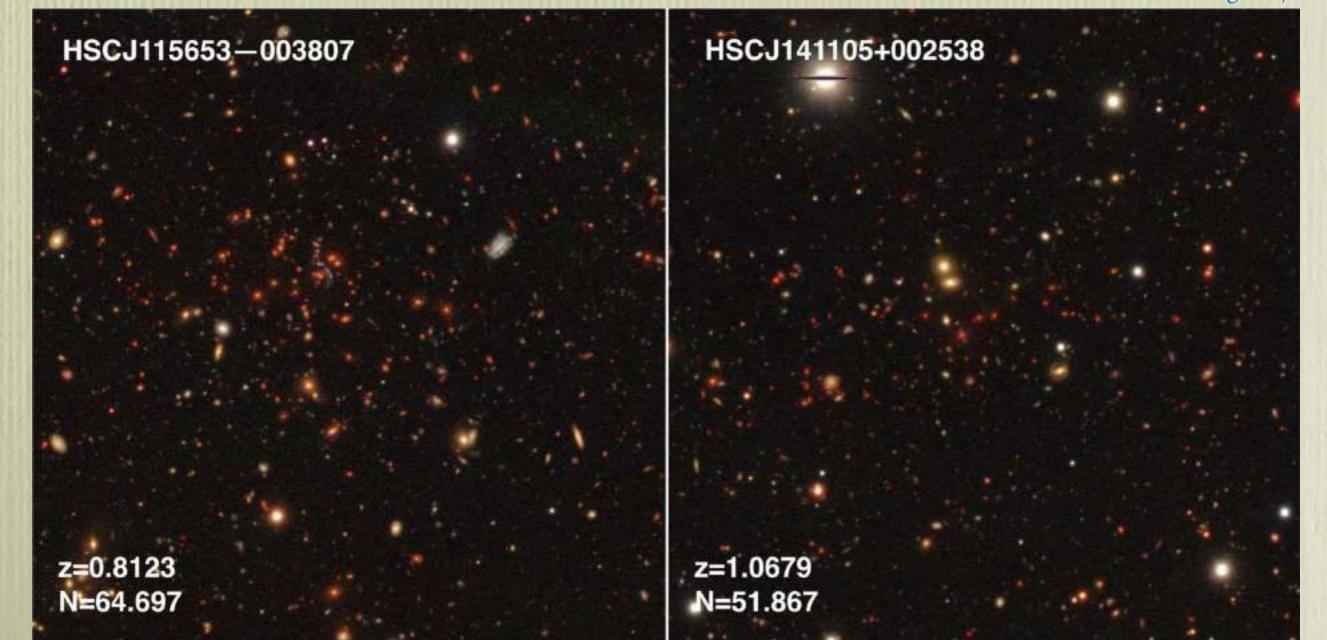

Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

	40 papers co a	ppear in a	opecial issue of file	
	Hyper Suprime-Cam : System Design and Verification of Image Quality	Miyazaki, Satoshi	An optically-selected cluster catalog at redshift 0.1 <z<1.1 data<="" from="" hyper="" program="" s16a="" strategic="" subaru="" suprime-cam="" td="" the=""><td>Oguri, Masamune</td></z<1.1>	Oguri, Masamune
	Hyper Suprime-Cam: Camera Dewar Design	Komiyama, Yutaka	The nature of Hα-selected galaxies along the huge cosmic web at z=0.4 revealed by Subaru Hyper Suprime-Cam survey	Koyama, Yusei
	Hyper Suprime-Cam: Filters	Kawanomoto, Satoshi	Multiwavelength study of X-ray Luminous Clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field	Okabe, Nobuhiro
	The On-Site Quality-Assurance System for Hyper Suprime-Cam: OSQAH	Furusawa, Hisanori	First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. I. The role of group or cluster environment in star formation guenching from $z = 0.2$ to 1.1	Jian, Hung-Yu
	The Hyper Suprime-Cam SSP Survey: Overview and Survey	Takada, Masahiro	Plast results on the cluster galaxy population from the Subaru Hyper Supring Cam survey. II. Faint end color-magnitude diagrams and radial profiles. Fred and blue galaxies at \$0.1<74.1\$	Nishizawa, Atsushi
	The Hyper Suprime-Cam Software Pipeline	Bosch, James	The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey	Mandelbaum, Rachel
	Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline	Huang, Song	Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data	Oguri, Masamune
	The bright-star masks for the HSC-SSP survey	Coupon, Jean	Cam Subaru Strategic Program S16A wide field mass maps	Miyazaki, Satoshi
	rirst Data Release of the Hyper Suprime-Cam Subaru Strategic Program	Tanaka, Masayuki	Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey	Medezinski, Elinor
	Photometric Redshifts for the Hyper Suprime-Cam Subaru Strategic Program Data Release 1	Tanaka, Masayuki	Planck Sunyaev-Zel'dovich Cluster Mass Calibration using Hyper Suprime-Cam Weak Lensing	Medezinski, Elinor
	Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at <i>z</i> 4-7 Derived with the Half-Million Dropouts on the 100 deg ² Sky	Ono, Yoshiaki	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses	Sonnenfeld, Alessandro
	GOLDRUSH. II. Clustering of Galaxies at \$z*sim 4-6\$ Revealed with the Half-Million Dropouts Over the 100 deg\$^2\$ Area Corresponding to 1 Gpc\$^3\$	Harikane, Yuichi	Clustering of galaxies around AGN in the HSC Wide survey	Shirasaki, Yuji
	GOLDRUSH. III. A Systematic Search of Protoclusters at z~4 Based on the >100 deg^2 Area	Toshikawa, Jun	Enhancement of Galaxy Overdensity around Pair Quasars at \$z<3.6\$ based on the Hyper Suprime-Cam Subaru Strategic Program Survey	Onoue, Masafusa
	Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program Strategy and Clustering Properties of \$\sim 2.000\$	Ouchi, Masami	Luminous quasars do not live in overdense regions of LBGs at z~4	Uchiyama, Hisakazu
N	SILVERRUSH. II. First Catalogs and Properties of ~2,000 Lya Emitters and Blobs at z~6-7 Identified over the 14-21 deg^2 Sky	Shibuya, Takatoshi	Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam wide field imaging	He, Wanqiu
	Sit VERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7	Shibuya, Takatoshi	The Quasar Luminosity Function at Redshift 4 with Hyper Suprime- Cam Wide Survey	Akiyama, Masayuki
	SILVERRUSH. Lvg Luminosity Functions at 7 = 5.7 and 6.6 Studied with ~2,000 LAEs on the 71 21 deg ² Sky	Ono, Yoshiaki	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 Quasars and Luminous Galaxies at 5.7 < z < 6.8	Matsuoka, Yoshiki
	A 17 deg\$^2\$ survey of emission line galaxies at z\$<\$1.5 in HSC=	Hayashi, Masao	X-Ray Bright Optically Faint Active Galactic Nuclei in the Subaru Hyper Suprime-Cam Wide Survey	Terashima, Yuichi
	Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus III	Chiba, Masashi	Galaxy Interactions Trigger Rapid Black Hole Growth: an unprecedented view from the Hyper Suprime-Cam Survey	Goulding, Andy
	Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?	Greco, Johnny	Searching for Moving Objects in HSC-SSP: Pipeline and	Chen, Ying-Tung

Preliminary Results

Greco, Johnny

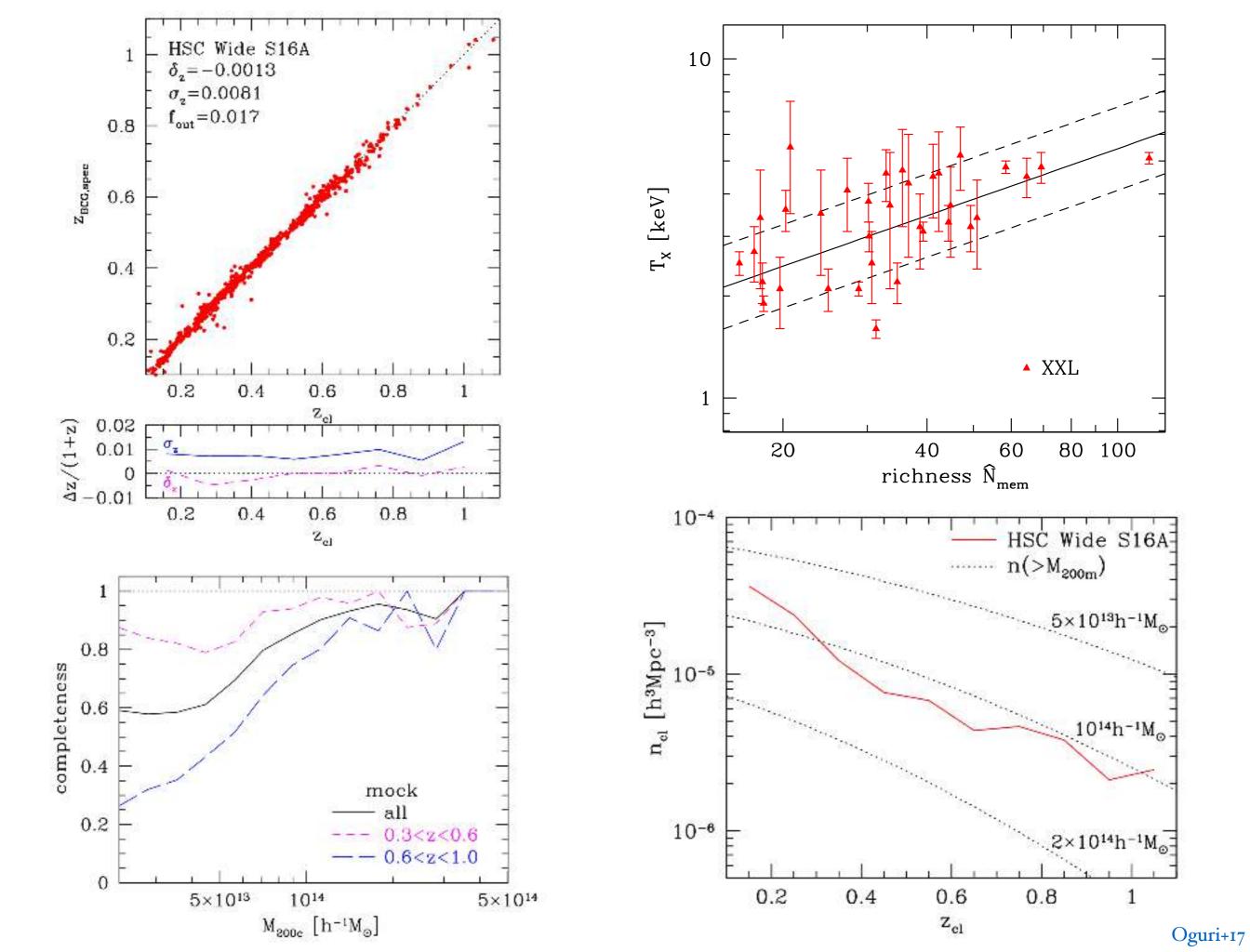
Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

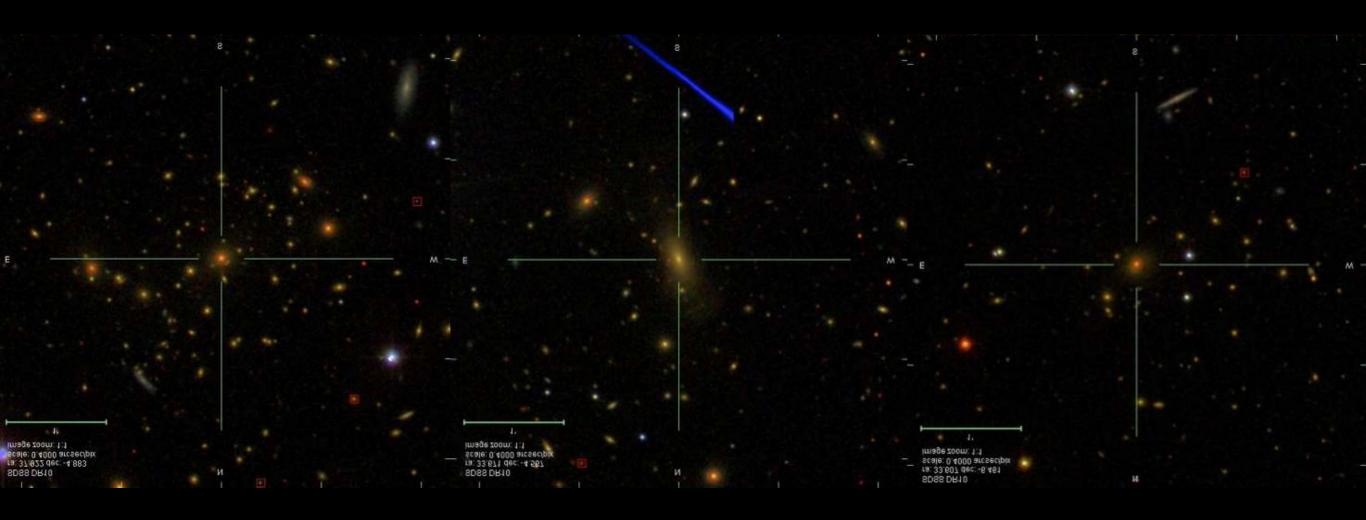


seeing red

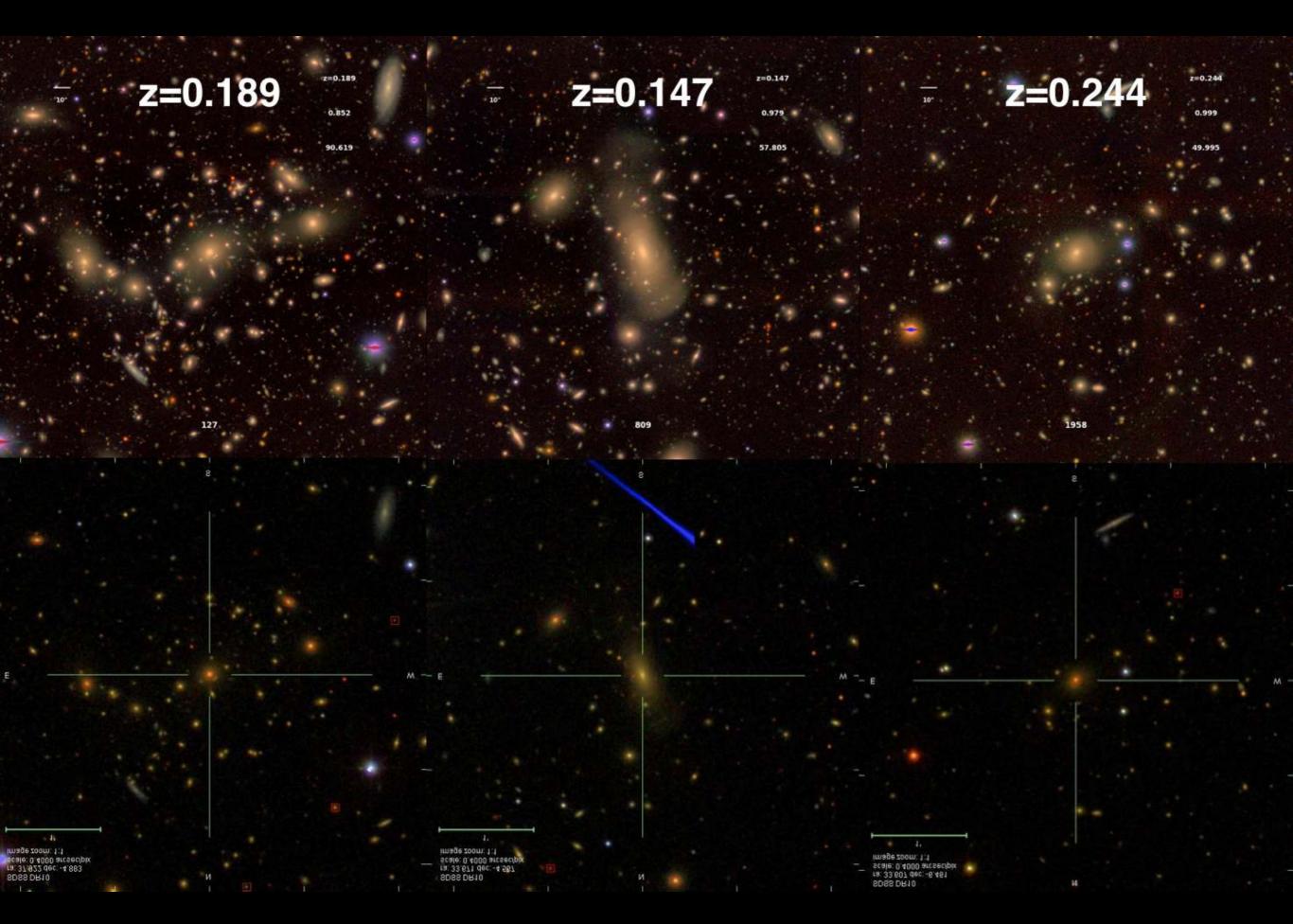
targeting clusters with prominent red sequence, *camira* (cluster finding algorithm based on multi-band identification of red sequence galaxies) has found -1900 clusters at z=0.1-1.1 over 230 deg² with richness N≥15

Oguri+17


seeing red



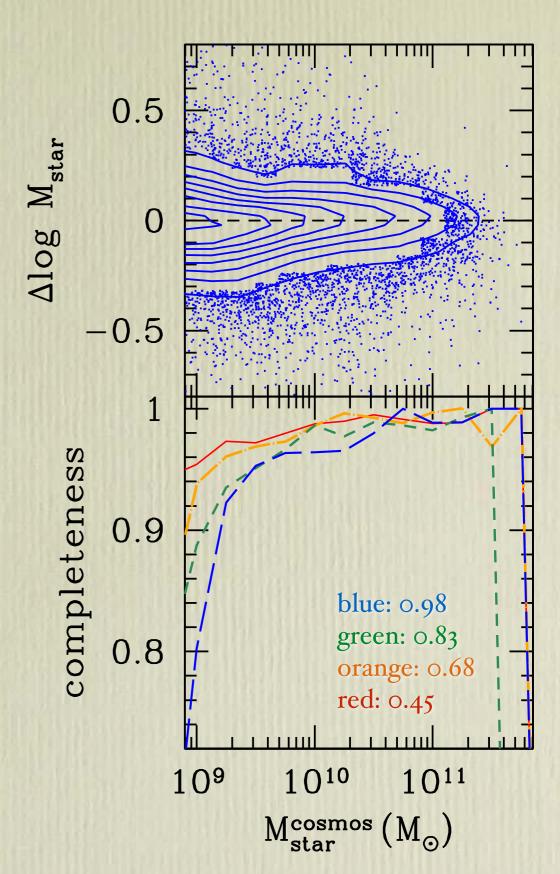
targeting clusters with prominent red sequence, *camira* (cluster finding algorithm based on multi-band identification of red sequence galaxies) has found -1900 clusters at z=0.1-1.1 over 230 deg² with richness N≥15

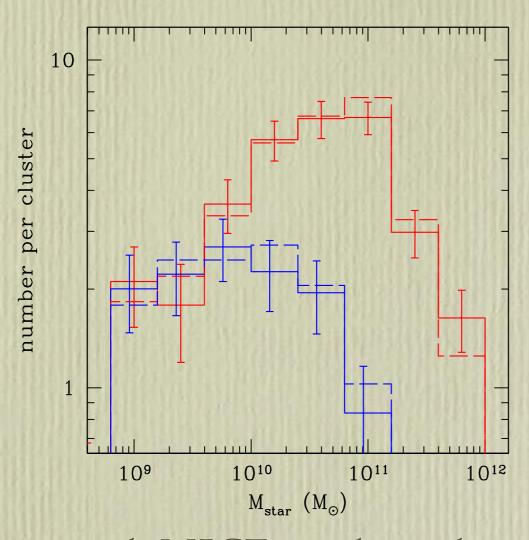

Oguri+17



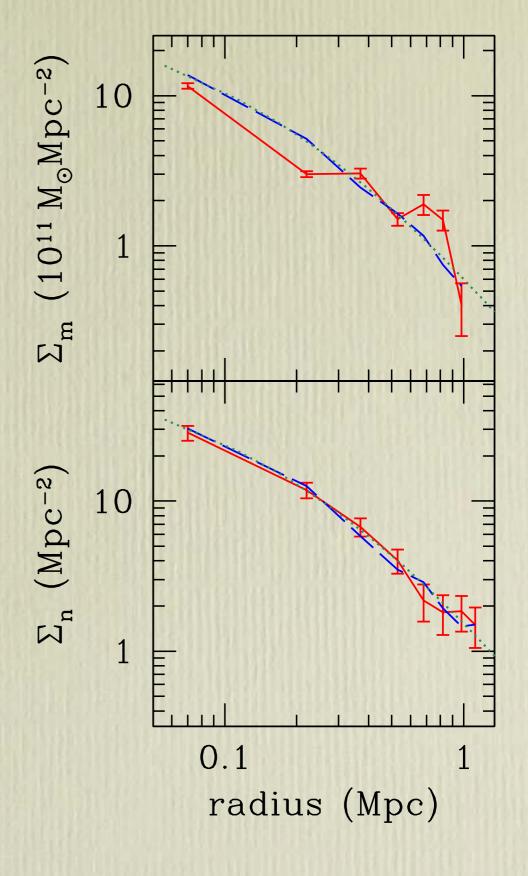
credit: Song Huang & HSC, SDSS

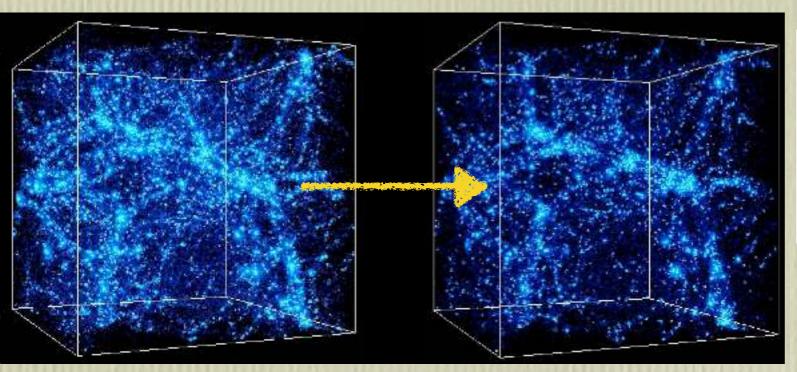
credit: Song Huang & HSC, SDSS




power of HSC: a preview

stellar mass estimates


- for galaxies at z>0.8, the HSC *grizy* photometry does not sample much of restframe optical, resulting in biases in stellar mass estimates based on SED fitting
- we thus use a machine learning algorithm, Direct Empirical Method (DEmP, Hsieh & Yee 2014), for the task
- hybrid of linear regression and nearest neighbor
- COSMOS2015 and HSC UD catalogs used as training set, applied to HSC wide data
- our estimates are unbiased
- highly complete above 1010 Msun

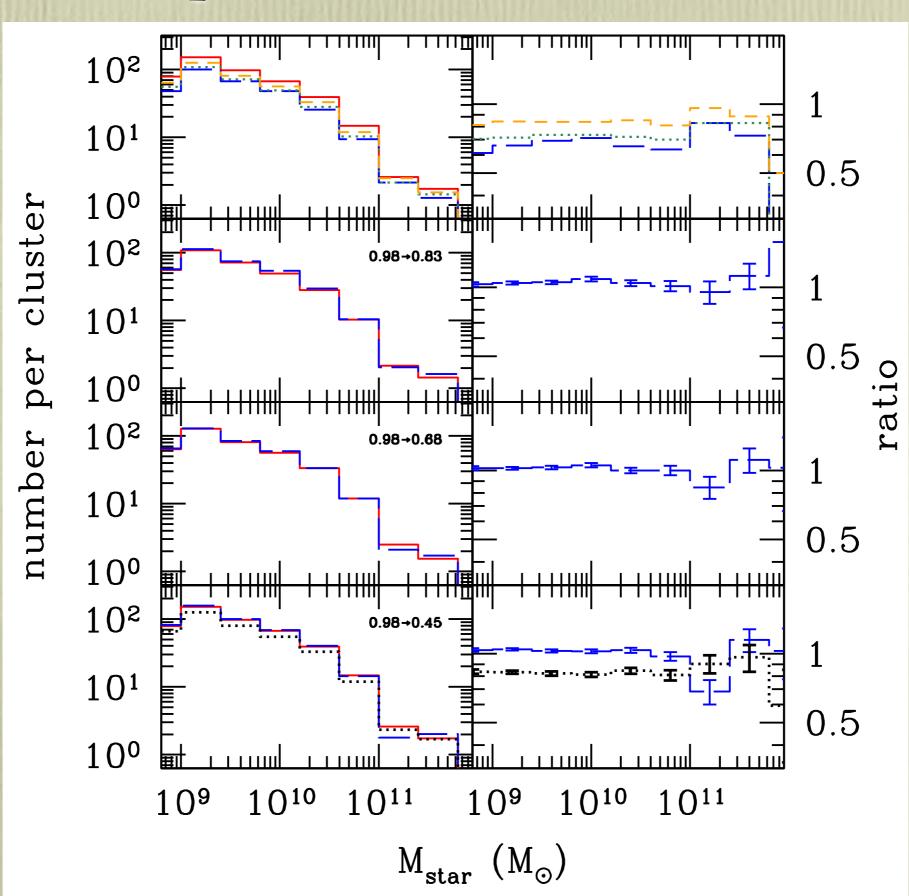

background subtraction scheme

- tests with MICE mock catalog
- background counts estimated from an annulus 5-7Mpc from cluster center
- skipped clusters with large holes in the annulus
- dashed = truth

top N selection of halos

Remaining Fraction (%)							
initial z	final z (no scatter) final z (25% scatter)						
	0.83	0.68	0.45	0.83	0.68	0.45	
0.98	86	76	66	62	67	58	
0.83	_	86	70	_	64	55	
0.68	_	_	79	_	_	58	

for N=100 over 60% Millennium volume

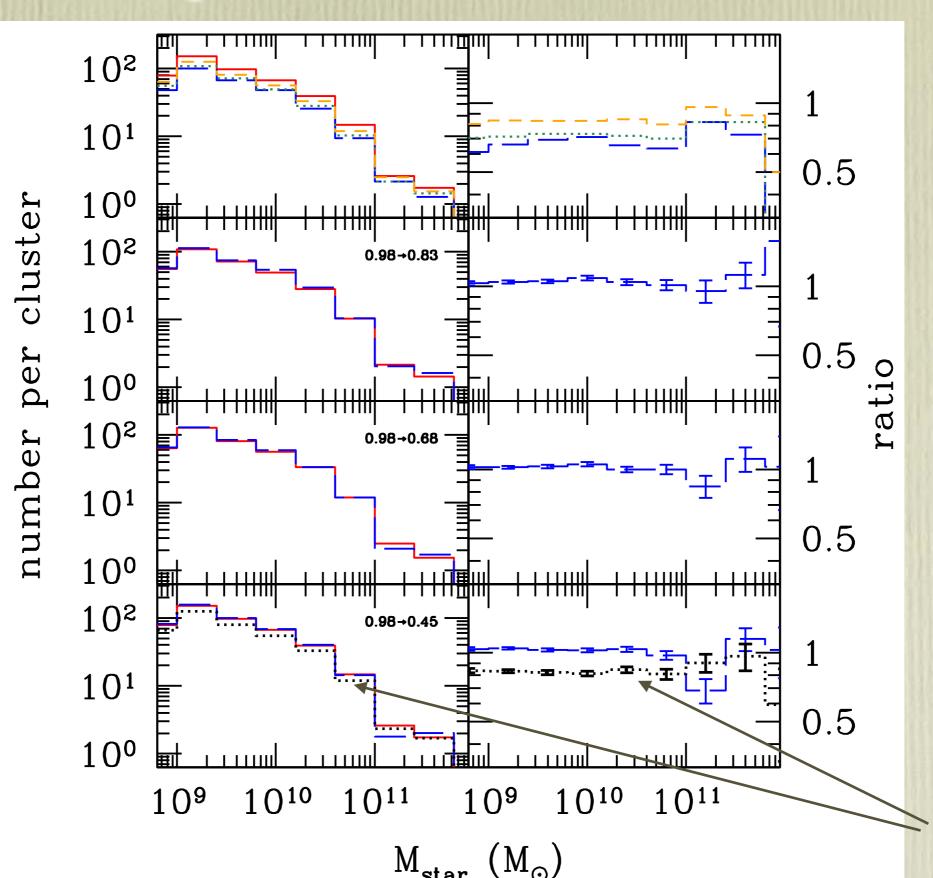

- A. Kravtsov
- construct cluster samples that represent progenitor-descendant relationship statistically
- Ansatz: given comoving volume, the most massive N halos will remain among the most massive N at a later time
- similar in spirit to the fixed cumulative number density selection for field galaxies
- tests with Millennium simulation suggest above holds to -65% (including scatter in mass-observable relation), even with Δz -0.6

top N selection of halos

top 100 in 4 bins: blue: 0.98 green: 0.83 orange: 0.68 red: 0.45

dashed =
descendants
of top 100
selected at
z=0.98

solid = top 100 selected at lower-z

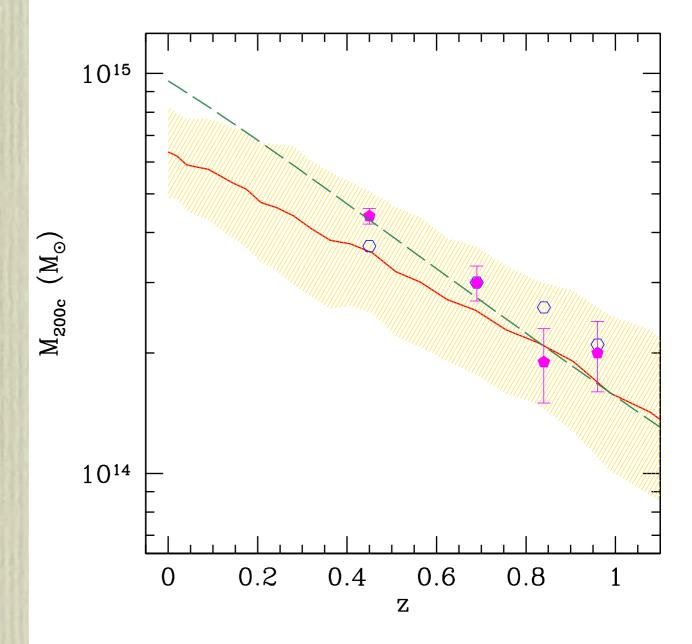


top N selection of halos

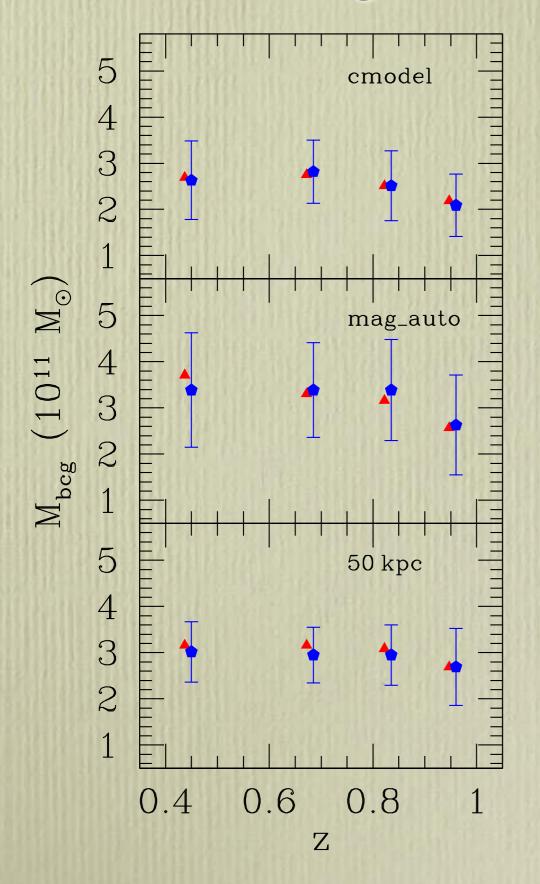
top 100 in 4 bins: blue: 0.98 green: 0.83 orange: 0.68 red: 0.45

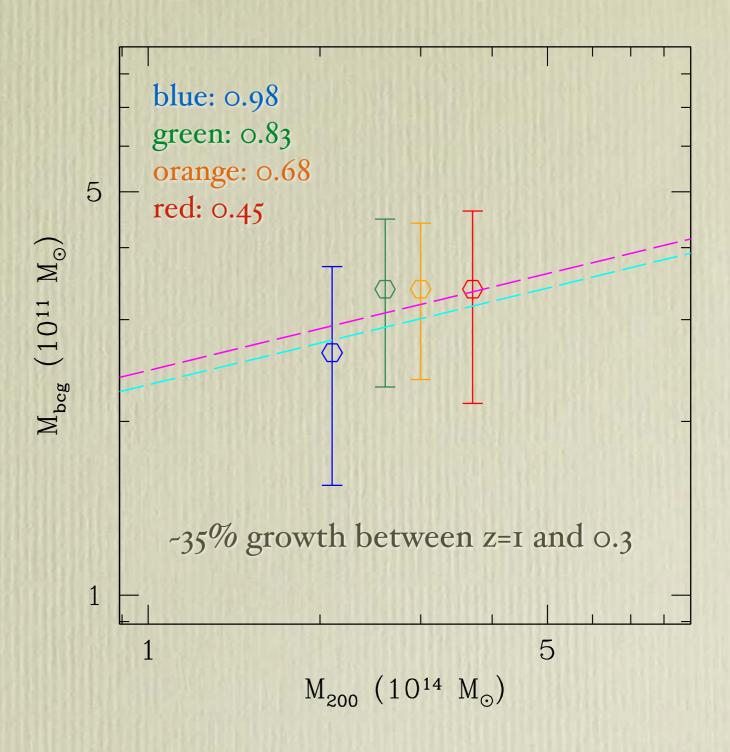
dashed =
descendants
of top 100
selected at
z=0.98

solid = top 100 selected at lower-z



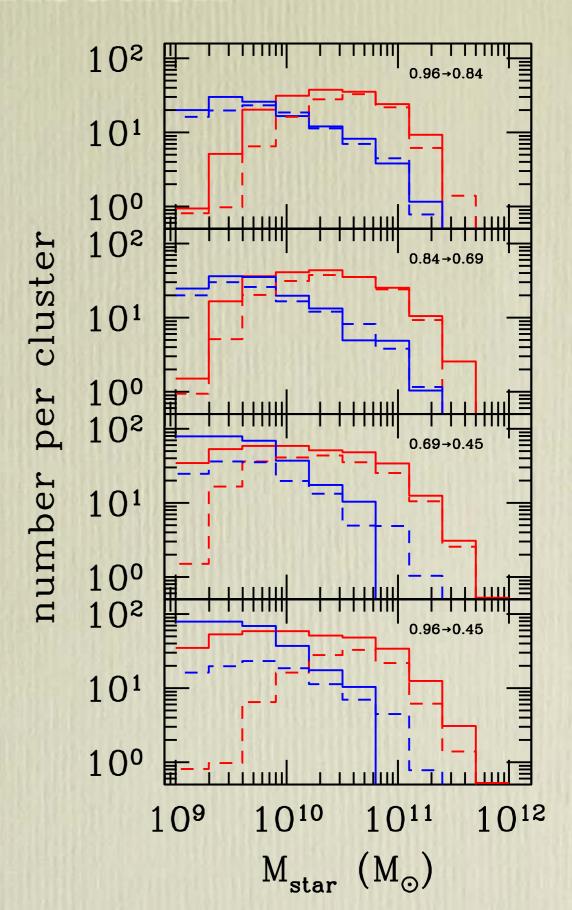
top 200 halos


halo mass estimates

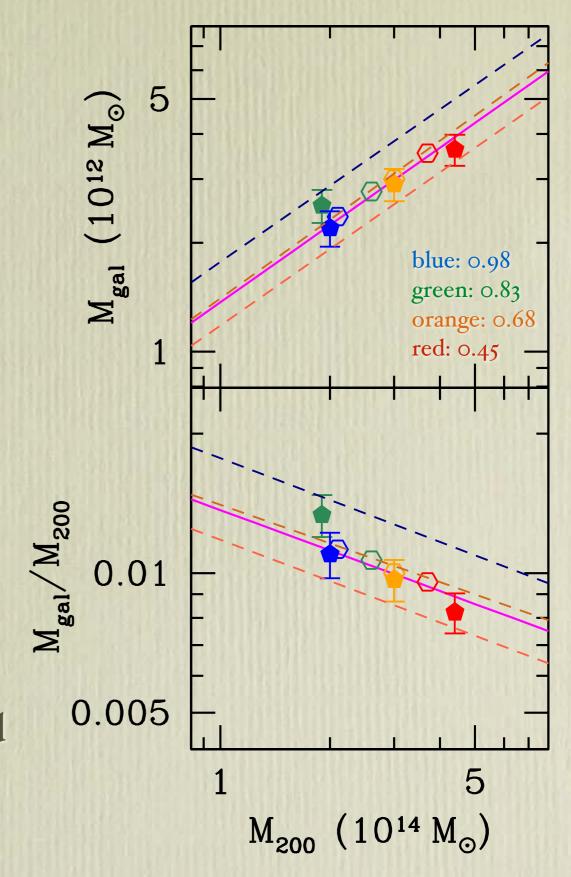

- two methods
 - mean mass of top 100 halos over (420h⁻¹Mpc)³ in Millennium, with reasonable assumptions in mass-observable relation (open circles)
 - stacked lensing (solid points)
- from -2x10¹⁴ M_{sun} at z-1 to -4x10¹⁴ M_{sun} at z-0.45
- descendant mass at z-0 likely in (6-10)x10¹⁴M_{sun}

Basic Cluster Properties stacked lensing abundance redshift range M_{200} N_{lim} M_{200} mean z F200 F200 $(10^{14} M_{\odot})$ $(10^{14} M_{\odot})$ (Mpc) (Mpc) 0.30 - 0.600.45 4.4 ± 0.2 1.33 3.7 1.27 30.0 0.60 - 0.770.69 3.0 ± 0.3 1.07 3.0 1.09 22.70.77 - 0.900.86 2.6 0.98 0.84 1.9 ± 0.4 21.6 0.90 - 1.020.96 2.0 ± 0.4 0.842.1 0.8718.0

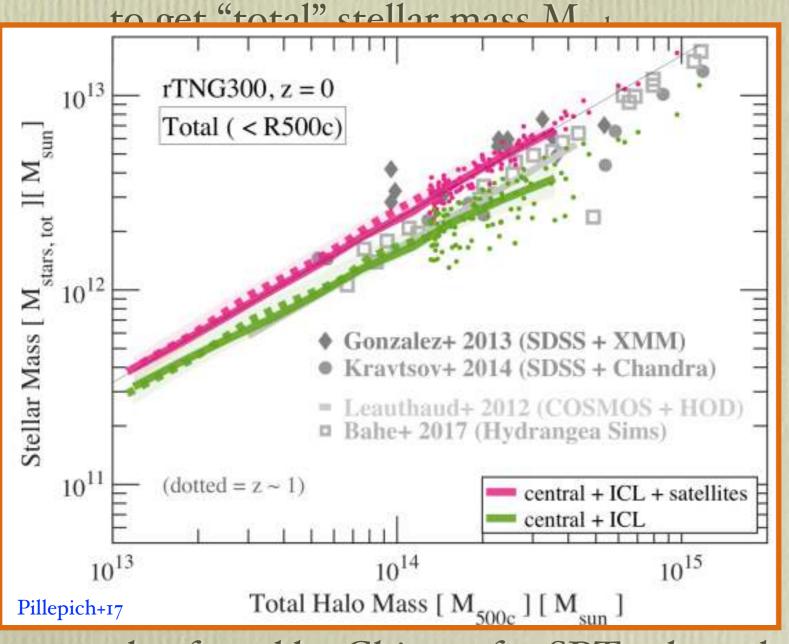
BCG growth: a simplified analysis



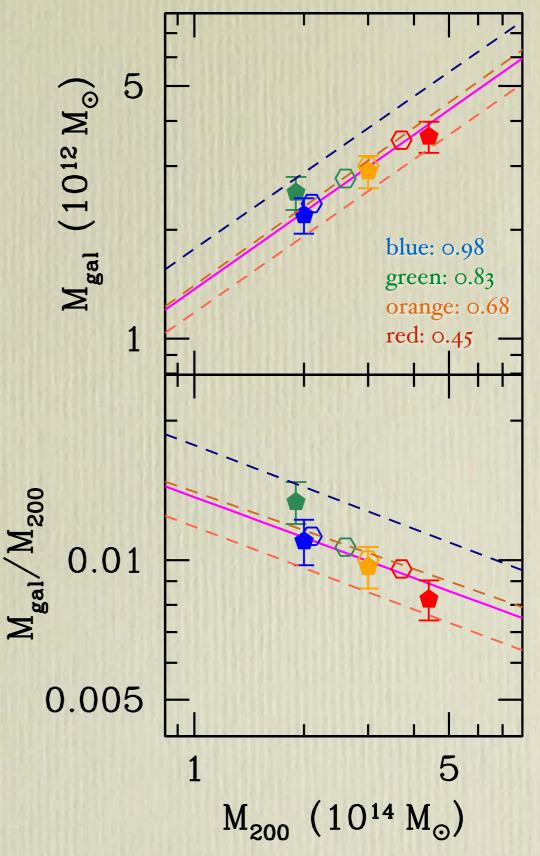
Zhang+16:
$$M_{\rm bcg} \propto M_{200}^{0.24} (1+z)^{-0.19}$$


stellar mass distribution

- each panel shows pairwise comparison of SMDs (no BCGs) in two redshift bins for red and blue galaxies
 - dashed = higher-z; solid = lower-z
- completeness corrections applied
- apparent growth at both very high mass and low mass ends
 - (except for disappearance of massive blue galaxies)
 - for $M>10^{10}M_{sun}$ red galaxies, abundance at z=0.45 is 2x that at z=0.96(consistent with $N \propto M^{0.8}$ scaling)
 - for lower mass red galaxies, difference is 7x
 - ratios for blue ones are 1.5x and 3x

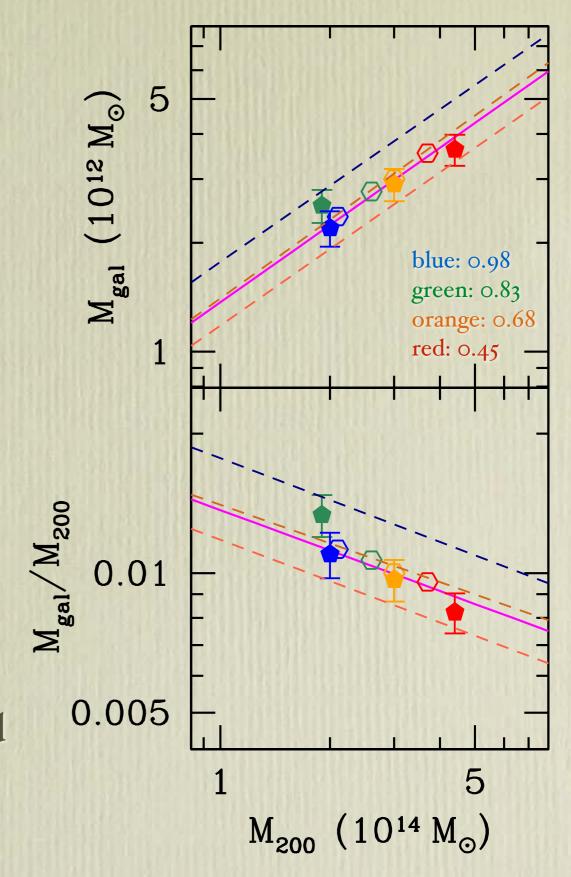

stellar mass contents of clusters

- integrate the SMD down to $10^{10} M_{sun}$ to get "total" stellar mass M_{gal} (including BCGs)
- clusters appear to move along the $M_{gal} \propto M_{200}$ °.7 locus (solid line, taken from Lin+12 for a totally different sample)
- why is there no/little evolution of the M_{gal} - M_{200} relation?
 - lots of stripping required?
 - same for N-M₂₀₀
 - would $M_{gal} \propto M_{200}$ at any early epoch?
- also found by Chiu+17 for SPT-selected clusters

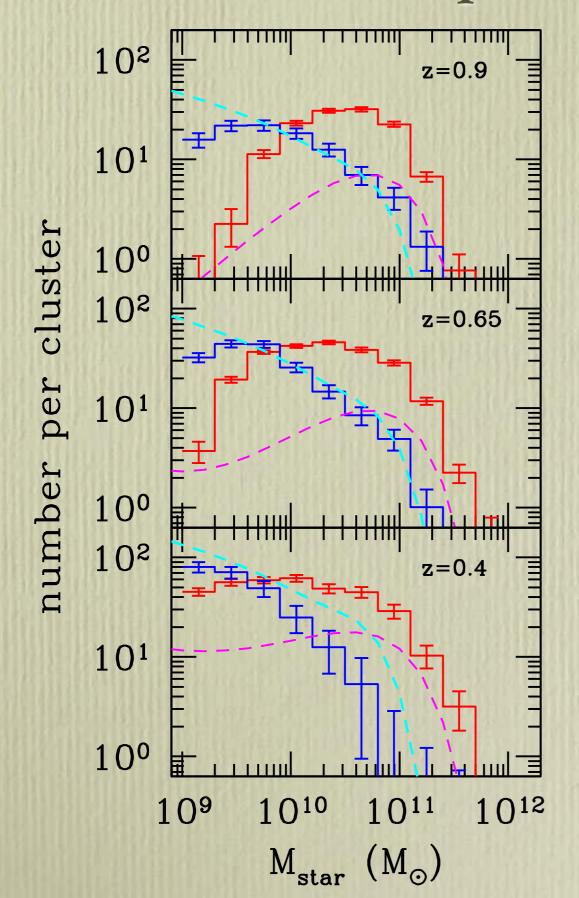


stellar mass contents of clusters

• integrate the SMD down to 1010 Msun

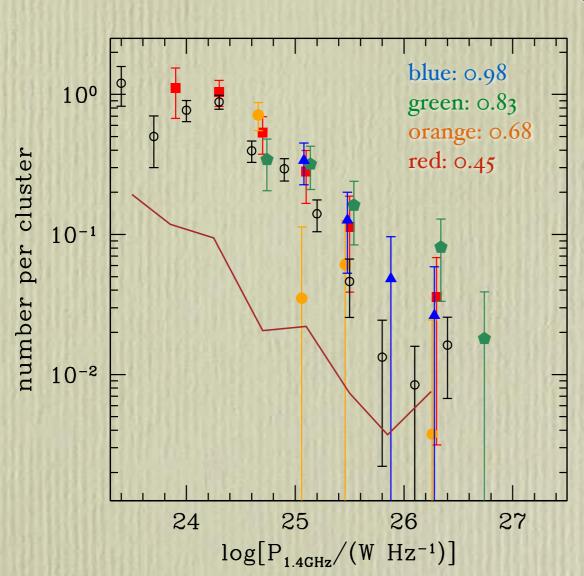


 also found by Chiu+17 for SPT-selected clusters

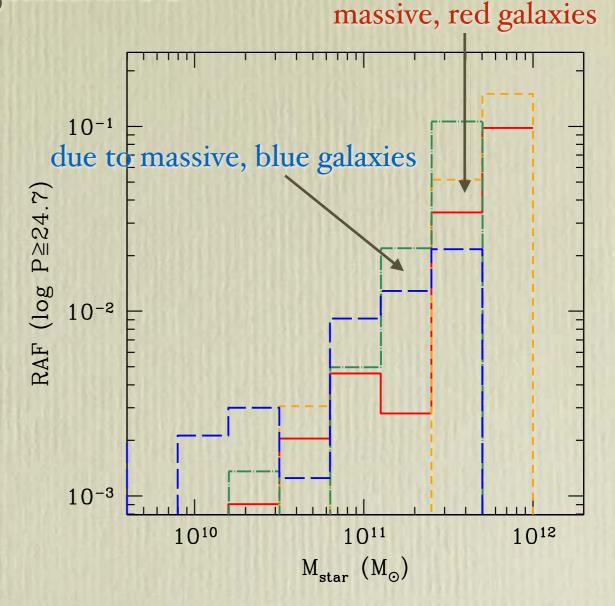


stellar mass contents of clusters

- integrate the SMD down to $10^{10} M_{sun}$ to get "total" stellar mass M_{gal} (including BCGs)
- clusters appear to move along the $M_{gal} \propto M_{200}$ °.7 locus (solid line, taken from Lin+12 for a totally different sample)
- why is there no/little evolution of the M_{gal} - M_{200} relation?
 - lots of stripping required?
 - same for N-M₂₀₀
 - would $M_{gal} \propto M_{200}$ at any early epoch?
- also found by Chiu+17 for SPT-selected clusters



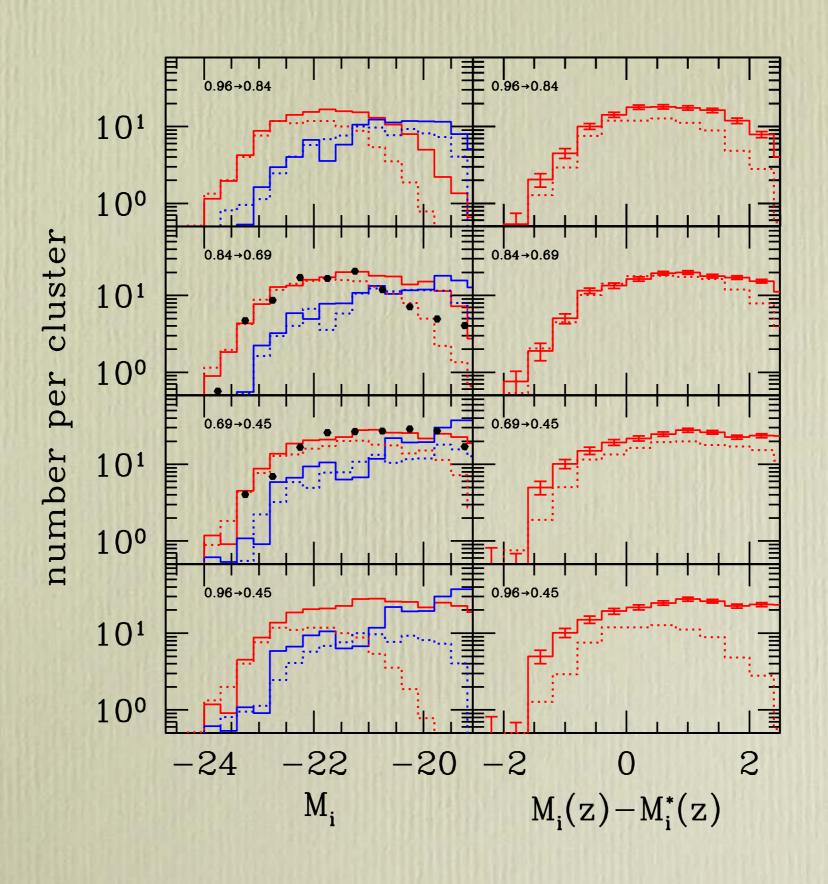
comparison with field



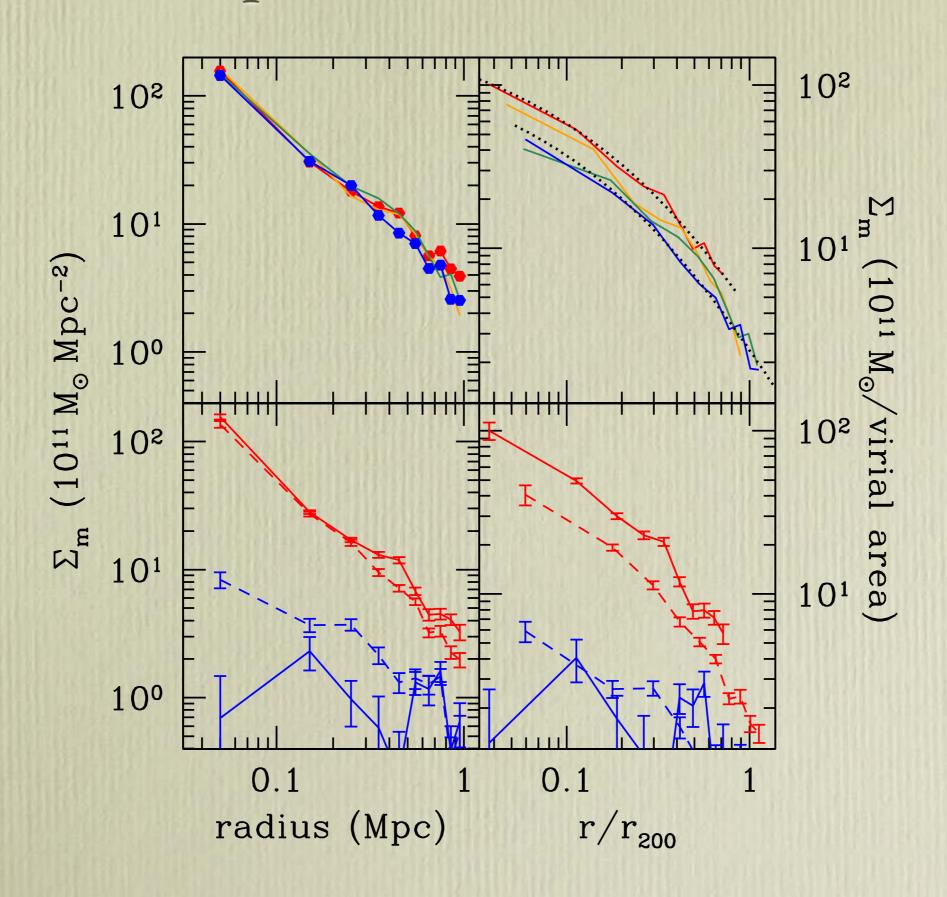
- Davidzon+17 SMF from COSMOS shown as dashed curves
 - multiplied by cluster comoving volumes
- clusters always over-abundant in red galaxies
 - cluster (or group) environment must have enhanced quenching
 - a similar comparison between group and field may inform the degree of preprocessing in groups (?)
- except at low-z, blue galaxy number density comparable
 - down-sizing of quenching kicked in at z<0.5?!

radio galaxies

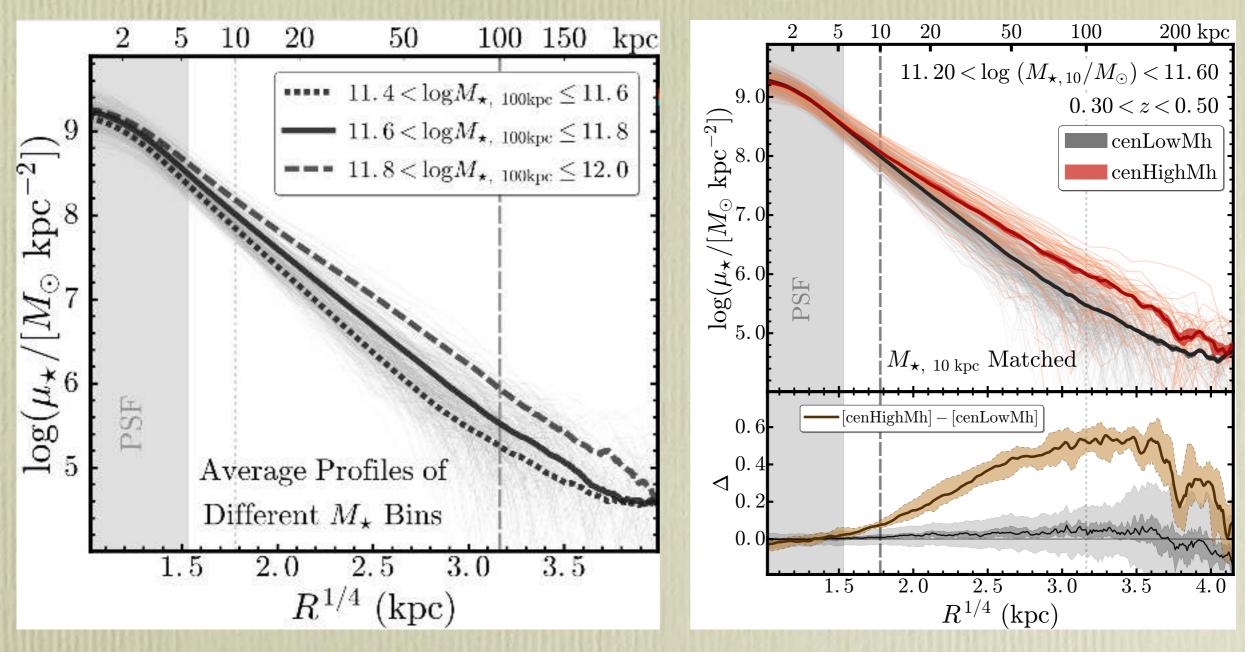
- count FIRST sources around clusters, then do global background subtraction
- cluster RLD -10x higher than scaled field RLF (Smolčić+09)



- RAF = fraction of galaxies above certain radio power
- strong function of stellar mass
- possible change in the mode of accretion to SMBH at z-0.8?!


summary

- machine learning applied to stellar mass estimates
- *top N* cluster selection shown as useful way of studying cluster galaxy population evolution
- mild degree of growth in BCGs
- stellar mass distribution
 - down-sizing in galaxy content buildup confirmed
 - Mgal-M200 relation seems invariant in time; why?
 - clusters are overabundant in red galaxies ⇒ pre-processing?
- radio galaxies
 - clusters are overabundant in RGs too
 - at z>0.8, cluster RGs mainly blue; at lower-z red galaxies take over
- all the data this analysis is based is now publicly available (just google "HSC SSP")


luminosity distribution

spatial distribution

BCG stellar mass profiles

- profile of individual BCGs measurable to at least -100 kpc
- when stellar mass within 10kpc matched, outer envelop shows strong dependence on halo mass
- more accretion/mergers allowed in high mass halos